SOURCE-RESERVOIRED OIL RESOURCES, ALASKAN NORTH SLOPE

Paul L. Decker Alaska Department of Natural Resources, Division of Oil and Gas September 15, 2011

Talk Outline

- Unconventional Resources: terms and concepts
- North Slope Petroleum Systems
- Geologic Factors and Resource Evaluation Tools
- Drilling, Stimulation, and Production
- Analogues Texas and North Dakota
- North Slope Sources: Distribution and Maturity
- North Alaska 2011 Areawide Lease Sales
- Summary

Talk Outline

- Unconventional Resources: terms and concepts
- > North Slope Petroleum Systems and Source Rocks
- > Geologic Factors and Resource Evaluation Tools
- > Drilling, Stimulation, and Production
- > Analogues Texas and North Dakota
- > North Slope Source Rock Distribution and Maturity
- > North Alaska 2011 Areawide Lease Sales
- Summary

Unconventional resources

Distinguished from conventional resources by

lower geologic risk... hydrocarbons are almost certainly present everywhere within the play fairway

BUT

higher engineering risk... not sure the resource will be recoverable everywhere (massive stimulations must succeed)

Unconventional terminology

Some are synonyms, others are not

- Resource plays
- Continuous accumulations
- Basin-centered accumulations
- Technology reservoirs
- Tight oil / gas
- Shale gas / shale oil (# oil shale)
- Source-reservoired oil / gas
 - ✓ Source = Reservoir = Trap

The Resource Pyramid

Talk Outline

- > Unconventional Resources: terms and concepts
- North Slope Petroleum Systems and Source Rocks
- > Geologic Factors and Resource Evaluation Tools
- > Drilling, Stimulation, and Production
- > Analogues Texas and North Dakota
- > North Slope Source Rock Distribution and Maturity
- > North Alaska 2011 Areawide Lease Sales
- Summary

North Slope Region

North Slope Petroleum Systems

3 prolific source rock intervals

Major North Slope Oil Source Rocks

Hue Shale/GRZ

- Cretaceous age, younger offshore to northeast
- Shale deposited in sediment-starved & oxygen-depleted deep foreland basin
- Separate tongues of different ages in west that coalesce eastward
- Abundant volcanic ash beds altered to sticky clays (plastic behavior?)
- Source of Tarn field oil (37 deg API)

lower Kingak Formation

- Early Jurassic age (just above Shublik Formation)
- Shale deposited on sediment-starved & oxygen-depleted platform margin
- Few well penetrations to south, rare outcrops in foothills
- Lack details on regional distribution and source-reservoir characteristics
- Source of Alpine field oil (40 deg API)

Shublik Formation

- Late Triassic age (just below Kingak Formation)
- Phospatic limestone, shale, sandstone, & siltstone deposited on nutrient-rich upwelling-influenced continental margin
- Few well penetrations to south, common outcrops in foothills
- Lack details on most source-reservoir characteristics
- Source of Kuparuk field oil (24 deg API)

Central North Slope Seismic Transect

West

- GRZ-Hue Sh at ~8,000 13,000 ft depth
- Shublik + Lower Kingak at ~10,000 11,000 ft depth

Talk Outline

- > Unconventional Resources: terms and concepts
- > North Slope Petroleum Systems and Source Rocks
- Geologic Factors and Resource Evaluation Tools
- > Drilling, Stimulation, and Production
- > Analogues Texas and North Dakota
- > North Slope Source Rock Distribution and Maturity
- > North Alaska 2011 Areawide Lease Sales
- Summary

Key Geologic Factors -- Shale Resource Plays

Organic Geochemistry

- □ Total Organic Carbon content (richness)
- ☐ Hydrogen Index (oil-prone, gas-prone, or inert kerogen types)
- Oil properties (gravity, in-situ viscosity, wax & asphaltene content, etc.)

Thermal and Tectonic History

- \Box Thermal maturity (immature \rightarrow oil window \rightarrow gas window \rightarrow supermature)
- □ Stress-strain history (# of phases of natural fracturing, etc.)
- □ Current stress regime (determines orientation of artificial fractures and whether natural fractures are propped open)

Petrophysics

- □ Porosity (void space between grains, within grains, and in fractures)
- □ Permeability (how connected are pore spaces?)
- □ Relative Permeability (oil, gas, water which flows more readily?)

Geomechanics -- Is the rock brittle enough to create and sustain fractures?

- Cement content and types (carbonate, silica, sulfides, etc.)
- ☐ Grain content and types (silt, sand, fossil debris, etc.)
- □ Layering (thickness and mechanical contrast)

Shale Resource Evaluation Tools

- Core and Outcrop analyses
 - □ RockEval TOC (→ richness, kerogen type, general thermal maturity)
 - □ Vitrinite Reflectance (→ thermal maturity)
 - □ Porosity and Permeability
 - □ Inorganic chemical content (XRD)
 - □ Rock Mechanics testing
 - □ Hydrocarbon desorption
 - Optical and Scanning Electron Microscopy
 - □ Fracture measurements and statistics

15 microns

(0.015 mm)

Pore throats are less than 1 millionth of a meter across

Wellbore and Well Log analyses

- □ Conventional logging suites
- ☐ Fracture imaging logs
- □ Magnetic Resonance, Photoelectric Effect, ...
- □ Delta Log-R log overlays
- □ Production testing → flow rates, pressure
- Microseismic monitoring of hydrofracture stimulations

Advanced seismic analyses

- □ AVO → Geomechanical brittleness (Incompressibility and Rigidity) for artificial fracs
- □ AVAZ → Anisotropy due to fractures or stress (zones prone to natural fractures)

Resource Assessments

Source rock systems

USGS currently assessing technically recoverable resources in sourcerock systems of the North Slope

- Public geology review meeting in Anchorage on October 25, 2011
 - □ Present and solicit feedback on geological framework and assumptions
 - Methodology and L48 analogues

Basic resource assessment method:

- □ Determine cell size drained by a single well (e.g., 80 or 160 acres)
- □ Divide the play area into cells
- □ Determine probabilistic range of Estimated Ultimate Recovery (EUR) per well
 - production data
 - analogues
- □ Technically recoverable volume = EUR per cell x Number of cells

Talk Outline

- > Unconventional Resources: terms and concepts
- > North Slope Petroleum Systems and Source Rocks
- > Geologic Factors and Resource Evaluation Tools
- Drilling, Stimulation, and Production
- > Analogues Texas and North Dakota
- > North Slope Source Rock Distribution and Maturity
- > North Alaska 2011 Areawide Lease Sales
- Summary

Close Well Spacing, Many Pads

Close Well Spacing, Many Pads

Infrastructure-intensive development

Bakken Shale

Eagle Ford Shale

North Slope ?

640 acres/well (Sanish & Parshall Fields)

125-140 acres/well (EOG plans)

120-160 acres/well (Great Bear estimates)

Frac FAQs

How do they work?

Fluid (water + sand + additives for gelling and gel-breaking, etc.) is pumped into an isolated part of the borehole under increasing pressure. When the fluid pressure exceeds the rock strength, the formation fractures and the sand-rich fluid shoots out into the growing cracks. The sand props the fractures open after the frac fluid flows back into the wellbore.

How much water do they use?

Frac jobs for horizontal producers in L48 shale plays consume 1 to 5.5 million gallons of water (and millions of pounds of sand) per well, depending on rock properties, number of stages pumped, etc. (For comparison, ice roads require 1-1.5 million gallons per mile.)

What are the environmental risks?

Contamination of fresh water aquifers with hydrocarbons and/or frac fluids is a potential concern where the hydrocarbon target and aquifer are not sufficiently separated. *THIS IS AVOIDABLE!*

Surface Water Limitations?

Kuparuk Uplands, White Hills, Franklin Bluffs, Foothills

Frac Fluids

Composition for a 16-stage West Virginia Marcellus Shale well

Product Name	Additive	Purpose	Use and Dilution	Actual Volume	Overall %
Water	The second secon	Creates fracture network in shale and carry sand to the formation	Approximately 4 million gallons per well	7,416,822 gal	95.9926%
Sand	1000	Enable fractures to remain open and allow gas to escape into the wellbore	Approximately 4 million pounds per well	296,255 gal	3.8343%
FR	Andread Contract Cont	Reduces friction between pipe and fluid	Diluted at one gallon per 1,000	6,318 gal	0.0818%
Biocide	Antimicrobial Agent	Eliminates bacteria in water sources	Diluted at one-half gallon per 1,000 gallons of water	1,089 gal	0.0141%
Scale Inhibitor	Scale Inhibitor	Prevents scale deposits	Diluted at one gallon per 1,000 gallons of water	1,057 gal	0.0137%
15% HCL	47 C	Dissolves cement and minerals in the perforations (non-diluted)	250 gallons per stage (non-diluted chemicals)	3,709 gal	0.0480%
Gelling Agent	Viscosifier	Adds viscosity to the fluid	Diluted at five gallons per 1,000 gallons of water	1,109 gal	0.0144%
Gel Breaker	Breaker	Reduces viscosity of fluid	Diluted at one-half gallons per 1,000		0.0013%

Frac Jobs

Where are the fractures and how far do they extend?

Frac Jobs

Where are the fractures and how far do they extend?

Single well flow rate over time

Shale gas well example

Single well flow rate over time

One producer's average production profile for Bakken Formation production wells – North Dakota

Talk Outline

- > Unconventional Resources: terms and concepts
- > North Slope Petroleum Systems and Source Rocks
- > Geologic Factors and Resource Evaluation Tools
- > Drilling, Stimulation, and Production
- Analogues Texas and North Dakota
- > North Slope Source Rock Distribution and Maturity
- > North Alaska 2011 Areawide Lease Sales
- Summary

Texas Analogue (?)

Upper Cretaceous Eagle Ford Shale (Boquillas Fm)

Texas Analogue (?)

Upper Cretaceous Eagle Ford Shale

Texas Analogue (?)

Upper Cretaceous Eagle Ford Shale

Jim Hogg

2010)

North Dakota Analogue (?)

Devonian-Mississippian Bakken Fm – shale sandwich

North Dakota Analogue (?)

Devonian-Mississippian Bakken Fm - First 60-90 day oil rates

Bakken Well Economics and Production

North Dakota Industrial Commission, Department of Mineral Resources

- Well Cost, Horizontal Producer
- Operating Cost, Monthly
- Royalty Rate
- Average Initial Production Rate
- Breakeven IP Oil Rate
- Breakeven Reserves per well
- Breakeven Reserves Success

\$6.1 million (47 jobs)

< \$7,000 (1 job)

16.7%

955 BOPD

235 BOPD

183,000 bbl

83%

Talk Outline

- > Unconventional Resources: terms and concepts
- > North Slope Petroleum Systems and Source Rocks
- > Geologic Factors and Resource Evaluation Tools
- > Drilling, Stimulation, and Production
- > Analogues Texas and North Dakota
- North Slope Source Rock Distribution and Maturity
- > North Alaska 2011 Areawide Lease Sales
- Summary

Shublik Formation

Kavik River area outcrops

Interbedded shale, limestone, silty-muddy, phosphatic, pyritic (600 ft thick)

Shublik Formation

Well logs and zonation

lower Kingak Fm

Sag River Fm

Zone A

Shublik

Fm

Zone B

Zone C

Zone D

Sadlerochit Gp

Rock Flour 1

Shublik Formation

Well logs and zonal correlations

Shublik-equivalent Otuk Fm

Oil-saturated lime mudstone fault breccia, Kukpowruk River

Shublik Fm Flow Tests

Kemik gas field: Naturally fractured reservoir (?)

Gas Flow Rates

Shublik A-B: 12 MMCFD (AOF?)

Shublik A-C: ~10 MMCFD

Shublik C: ~2 MMCFD

Shublik Fm Flow Tests

North Prudhoe Bay area – migrated oil (?)

Shublik Formation

Hydrogen Index and Thermal Maturity

Lower Kingak Formation

 Δ Log R source rock screening

Inigok 1 Itkillik River 1 Correlation DeltaLogR ResD(RD) ResD(ILD) 0.000 GAPI 150.000 ОНММ imeston DeltaLogR CALI(CAL) CALI 11500 9400 9500 11700 lower Kingak Fm source ~175-550 ft thick Sag River Shublik

Lower Kingak Formation

Hydrogen Index (??) and Thermal Maturity

Hue Shale/GRZ

Type section outcrops at Hue Creek, ANWR

Hue Shale/GRZ

Correlation Section and Δ Log R Total Organic Content estimates

(Decker, unpublished data, 2009)

Hue Shale/GRZ

Average Hydrogen Index and Thermal Maturity

Source Rock Comparison

Geologic characteristics

	Bakken	Eagle Ford	Shublik	L. Kingak	Hue/GRZ
Total Organic Carbon	10% avg	2-7%	2-3% avg	5% avg	3% avg
Main Kerogen Types	I/II (<u>oil</u>)	I/II (<u>oil</u>)	I/II-S (<u>oil</u>)	II/III (oil-gas)	II/III (oil-gas)
Oil Gravity, °API	42°	30-50°	24-45°	40°	38°
Thickness	up to 100 ft	50-250 ft	0-600 ft	175-550 ft	100-800 ft
Thermal Maturity	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas	Imm-Oil-Gas
Lithology & Variability	Sh-Slts-Sh	Sh-Slts-Ls	Sh-Slts-Ls	Shale	Sh-Tuff
Brittleness	Yes - Quartz	Yes - Calcite	Yes - Calcite	No?	No?
Natural Fractures	Yes	Locally	some zones	?	?
Overpressure	Yes	Locally	?	Probably	Locally

Talk Outline

- > Unconventional Resources: terms and concepts
- > North Slope Petroleum Systems and Source Rocks
- > Geologic Factors and Resource Evaluation Tools
- > Drilling, Stimulation, and Production
- > Analogues Texas and North Dakota
- > North Slope Source Rock Distribution and Maturity
- North Alaska 2011 Areawide Lease Sales
- Summary

North Alaska 2011 Areawide Lease Sales

Rescheduled to December 7-- All available unleased State tracts

2011 North Alaska Areawide Lease Sales

Three competitive oil and gas lease sales encompassing 14.7 million acres, re-scheduled to December 7, 2011.

North Slope Areawide

- Encompasses 5.1 million acres onshore, including the core producing area north of the Umiat baseline between NPRA and ANWR
- Barrow Arch crest and southern flank, northern Colville Basin
- o Conventional oil and gas prospects in structural, stratigraphic, and combination traps
- Shale oil fairway as currently understood

Beaufort Sea Areawide

- Encompasses 2 million acres in state waters and coastal areas
- Barrow Arch and faulted northern margin
- Oil and gas prospects in extensional, stratigraphic, and combination traps

North Slope Foothills Areawide

- Encompasses 7.6 million acres south of the Umiat baseline between NPRA and ANWR
- Colville Basin and Brooks Range foothills
- Mainly gas prospects in compressional anticlines

North Slope Areawide Lease Sale

Leased (July 2011)

Now scheduled for December 7, 2011

Available

Summary

- Many variables impact productivity of source-reservoired oil and gas
 - Organic geochemistry
 - Thermal and tectonic history
 - Petrophysics
 - Geomechanics
 - Drilling and completion practices
- Development of North Slope shale oil will likely depend on
 - o Successful exploration drilling, data gathering to establish geological favorability
 - Successful production pilot project(s)
 - Lowering drilling and operating costs
 - o All-season roads for year-round surface access to new areas
 - More hydraulic frac crews
 - Sufficient water supplies for frac make-up fluid
 - Factual understanding and operator transparency regarding frac practices

References Cited

Bello, R.O., 2009, Rate transient analysis in shale gas reservoirs with transient linear behavior: Texas A&M University doctoral dissertation, 190 p., accessed online January 4, 2011. http://www.pe.tamu.edu/wattenbarger/public_html/Dissertations%20and%20Theses/2009%20PhD%20-%20Bello.pdf

Canadian Business Resources, 2011, Corporate profile., accessed online January 16, 2011, http://www.cbr.ca/CompanyProfile.aspx?CompanyID=7505

DOE-NETL, 2010, Using artificial barriers to augment fresh water supplies in shallow Arctic lakes, grant DE-NT0005684; accessed online February 1, 2011. http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/ArcticResources/05684ArcticLakes.html

EQT Energy, 2011, Hydraulic fracturing fluid compositions, accessed online February 1, 2011. http://www.eqt.com/docs/pdf/FluidCompositions/Well512456.pdf

Kupecz, J.A., 1995, Depositional setting, sequence stratigraphy, diagenesis, and reservoir potential of a mixed-lithology, upwelling deposit: Upper Triassic Shublik Formation, Prudhoe Bay, Alaska: American Association of Petroleum Geologists Bulletin, v. 79, p. 1301-1319.

Lefever, J.A., 2008, Rock-Eval data of the Bakken Formation: North Dakota Geological Survey Geologic Investigations No. 63, 6 sheets, accessed online January 11, 2011.

https://www.dmr.nd.gov/ndgs/bakken/bakkenthree.asp

National Geographic, 2006, Alaska's North Slope interactive map, accessed online February 1, 2011. http://ngm.nationalgeographic.com/ngm/0605/feature1/map.html

Nordeng, S.H., 2010, First 60 - 90 day average Bakken pool production by well: North Dakota Geological Survey Geologic Investigations No. 123, 1 sheet, accessed online January 11, 2011.

https://www.dmr.nd.gov/ndgs/bakken/bakkenthree.asp

Nordeng, S.H., Lefever, J.A., Anderson, F.J., and Johnson, E.H., 2010, Oil generation rates and subtle structural flexure: keys to forming the Bakken sweetspot in the Parshall field of Mountrail County, North Dakota: American Association of Petroleum Geologists, Search and Discovery Article #20094, accessed online January 13, 2011.

http://www.searchanddiscovery.net/documents/2010/20094nordeng/ndx_nordeng.pdf?zbrandid=4051&zidType=CH&zid=5123844&zsubscriberId=1000997127&zb_dom=http://aapg.informz.net

Paneitz, J./ Whiting Petroleum, 2010, Evolution of the Bakken completions, Sanish field, Williston Basin, North Dakota; SPE conference, Keystone, Colorado, August 6, accessed online January 16, 2011.

http://phx.corporate-ir.net/External.File?item=UGFyZW50SUQ9NTc1NTV8Q2hpbGRJRD0tMXxUeXBIPTM=&t=1

Peters, K.E., Magoon, L.B., Bird, K.J., Valin, Z.C., and Keller, M.A., 2006, North Slope Alaska: source rock distribution, richness, thermal maturity, and petroleum charge: American Association of Petroleum Geologists Bulletin, v. 90, p. 261-292.

Sonnenberg, S., 2011, The Bakken petroleum system of the Williston Basin: American Association of Petroleum Geologists online seminar presentation.

Whiting Petroleum, 2011, Current corporate information, January, accessed online January 16, 2011.